数 学 (全1の1)

次の に適切な解を入れよ。複数の解がある場合は、コンマで区切ってすべての解を記入すること。
1. 2 次曲線 $y = x^2$ と円 $(x - a)^2 + (y - b)^2 = b^2$ がただ 1 つの共有点 Pをもち $(a, b$ は実数で $a > 0, b > 0$ とする),点 Pと 円の中心を通る直線の傾きが $-\frac{1}{6}$ であるとき,点 Pの座標の数値は $(x, y) = \boxed{1}$ で, b の値は $\boxed{2}$ である。
2. 関数 $f(n)$ は、 $f(n) = \lim_{\epsilon \to \infty} \left\{ \int_0^\epsilon x^{n-1} e^{-x} dx \right\}$ と定義されている。このとき、 $f(1) = 3$ 、 $\frac{f(n+1)}{f(n)} = 4$ 、 $f(n) = 6$ である。ただし、 c は実数、 n は自然数であり、 $\lim_{t \to \infty} t^k e^{-t} = 0$ (k は自然数)とする。
 3. 関数 f(x)は、f(x) = ax² + 2 (a - 2)x + 3a - 2 と定義されている。ただし、a は実数で a ≤ 0 とする。 (1) f(x)が 2 次関数である時、頂点のxの座標を a を用いて表すと ⑤ である。 (2) -2 ≤ x ≤ 2 における f(x) の最大値は ⑦ である。 (3) 問題については、削除しています。
4. ガラス板 8 枚を光が透過すると,光の強さはガラスがないときの 80 % になった。各ガラス板の形状や特性は同じとする。 (1) 光が 1 枚のガラス板を透過すると,光の強さはガラスがないときの ① %になる。 (2) 透過した光の強さをガラスがないときの 10 % 以下にするには,ガラス板は ① 枚以上必要である。log 10 2 = 0.301として計算すること。
5. 複素数平面上に 3 点 A (− 1 + 5 i), B(2 + 3 i), C(3 − 2 i)がある。 (1) △ABC の重心を複素数で表すと ② である。 (2) ∠ABC の大きさは ③ である。
 6. 3つの状態 A, B, Cがあり、その状態は下記の条件で確率的に変化する。 ・状態 A にあるとき、翌日には確率 1/6 で状態 B に移り、確率 5/6 で状態 B に留まり、確率 1/3 で状態 C に移る。 ・状態 B にあるとき、翌日には確率 1/3 で状態 B に移り、確率 1/3 で状態 B に留まり、確率 1/3 で状態 C に移る。 ・状態 C にあるとき、翌日には確率 1/6 で状態 B に移り、確率 5/6 で状態 C に留まる。 第 n 日目に状態 A, B, C である確率をそれぞれ A_n, B_n, C_nで表すとする。 (1) 漸化式が a_{n+1} = pa_n + qrⁿ, a₁ = a と定義されているとき、両辺を rⁿ⁺¹ で割ることにより一般項を求めると a_n = 1/4 となる。ただし、a, p, q, r は実数で p ≠ r, p ≠ 0, q ≠ 0, r ≠ 0 であり、n は自然数とする。 (2) B_{n+1}を B_{n+1} = aA_n + βB_n + γC_nと表すと a, β, γ の値は (a, β, γ) = 1/4 である。 (3) はじめ (第 1 日目) は確率 1 で状態 A にあるとする。このとき、A_n = 1/4 である。 (3) はじめ (第 1 日目) は確率 1 で状態 A にあるとする。このとき、A_n = 1/4 である。