令和 3 年度
 医学科一般選抜（前期日程）

問題冊子

理 科

（注 意）

1．問題胓子は試験開始の台図があるまで開かないこと。
2．問題业子は表紙のほか 23 ページである。
3．試験中に問題開子及び解答用紙の印刷不鮮明，ページの落丁•䑛丁等に気付 いた場合は，手を挙げて監督者に知らせること。

4．問題は物理，化学，生物のらち 2 科目を選択し，選択した科目の解答用紙の すべてに受験番呂及び氏名をはつきり記入すること。

5．解答はすべて解答用紙の所定の解答欄に明膫に記入すること。
6．解答に闋係のないことを書いた答案は，無効にすることがある。
7．選択しない科目の解答用紙は，試験開始 120 分後に監督者が回収するので，大きく入印をして机の太側に置くこと。
8．本学受験票を机の右上に出しておくこと。
9．試験時間は150分である。
10．問題册子は持ち帰つてもよいが，解答用紙は持ち帰らないこと。

化 学（3閭题）

I 次の文章を読えで，以下の問に答えよ。なお，原子量は水素1．0，酸素 16, ナトリウム 23 ，硫黄 32 ，カリウム 39 ，マンガン 55 ，ヨウ素 127 ，鉛 207 とする。必要ならば，ファラデー定数を $F=9.6 \times 10^{4} \mathrm{C} / \mathrm{mol}$ とせよ。（配点 32 ）

「琵琶湖の深呼吸］とも㭔ばれる琵琶湖の全層循環は，冬場に冷やされた表層の水が密度を増して沈降し，底䍚の水と混ざり合う現象である。このとき表屬から底層まで，水温と水に溶けている酸素の濃度（溶存酸素濃度）の値が一様となり，表䍚水に含まれる豊富な酸素が湖底まで供給される。 しかし近年，暖冬の影響から全層循環の時期の遅れがたびたび報告されており，2019年と2020年 は全㞒循䗉が観測されていない。全屬循環は，湖の生態系の維持や水質の保全に重要な意味をもつ とされ，湖底の低酸素状態の長期化が湖に及ぼす影響が注視されている。湖水の溶存酸素濃度の主 な測定方法には，酸化還元滴定による方法や，溶存酸素計による方法がある。

問 1 以下の文は，全層循環が起こった直後の 2018 年冬に，湖底付㐆の湖水を下線部（け）の方法で測定したときの手順を表している。ただし，操作中は空気中の酸素か混入しないものとする。

手䐓（i）湖水の採取と玈素の固定
船上で，湖水 100 mL を容器に採取し，塩化マンガン（II）水溶液と，ヨウ化カリウム水溶液と水酸化ナトリウム水溶液の混合液を加え，混和した。このとき生じた水酸化マ ンガン（II）沈殿は，反応式aのように水中の溶存酸㮦により酸化される（この操作を溶存酸素の固定という）。

$$
2 \mathrm{Mn}(\mathrm{OH})_{2} \text { (白色沈段) }+\mathrm{O}_{2} \longrightarrow 2 \mathrm{MnO}(\mathrm{OH})_{2} \text { (褐色沈檓) (反応式 a) }
$$

手順（ii）酸化還元滴定
奏験室に持ち帰り，手順（i）の褐色沈殿を含む水溶液に塩酸を加えて沈殿を溶解した後 （反応式b），溶液の全量をコニカルビーカーに移した。デンプンを指示薬として，この溶液を $2.0 \times 10^{-2} \mathrm{~mol} / \mathrm{L}$ チ才硫酸ナトリウム水溶液で滴定すると（反応式 c ），終点に達したときの滴下量は 6.9 mL であった。

$$
\begin{array}{ll}
\mathrm{MnO}(\mathrm{OH})_{2}+2 \mathrm{I}^{-}+4 \mathrm{H}^{+} \longrightarrow \mathrm{Mn}^{2+}+\mathrm{I}_{2}+3 \mathrm{H}_{2} \mathrm{O} & \text { (反応式 } \mathrm{b} \text {) } \\
\mathrm{I}_{2}+2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \longrightarrow 2 \mathrm{NaI}+\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6} & \text { (反応式 } \mathrm{c} \text {) }
\end{array}
$$

（1）下線部かについて，（i）啇定液を滴下するために使用する最も適切な器具の名称を答えよ。 また，この器具を絸水で洗った後，乾燥させずにすぐに使用するためにはどのような操作が必要か，（ii）操作の名称を答え，（iii）操作の手順を説明せよ。
（2）下線部门について，次の場合の溶液の色を答えよ。
（i）デンプンを加えた直後
（ii）終点に達した後
（3）反応式 $\mathrm{a} \sim \mathrm{c}$ において酸化剤としてはたらく物質の化学式を，兴れぞれ答えよ。
（4）湖水に含まれる溶存酸素湄度 $(\mathrm{mg} / \mathrm{L})$ を求め，有効数䆘 2 析で答えよ。ただし，反応式 $a \sim c$ の反応はすべて完全に進んだものとする。
（5）湖の表庴水は，全尿循䍗に関倸なく温度が低い時期の方が溶存酸素衅度が高い。温度が高 いと酸素の水への溶解度が小さくなる理由を答えよ。

問2 下線部けの溶存酸素計による方法について，図1は溶存酸素計の構造を表したものである。 この装置を湖水に漫してスイッチをス扎ると，溶存酸素濃度に比例して電流を発生する。この とき電極わでは，酸素分子が自困に透過できる隔膜を介して，溶存酸素が還元されて水酸化物イオンを生じる。
（1）電震a，bで起こる反応を䉓子 $e^{-\cdots を}$ を含むイオン反応式でそれぞ扎記せ。
（2）全庴循環が起こらなかつた2019年秋，湖底付近の湖水の溶存酸素濃度を溶存酸素計で測定した。その結果，湖水1L中に含まれる溶存酸素の 0.1% に相当する酸素が反応するま でに， $3.2 \times 10^{-3} \mathrm{~A}$ の電流が 60 秒間流れた。ただし，流れた電気量のすべてが電極a，b で起こる反応に使われるものとして以下の間に答えよ。
（i）湖水に含まれる溶存酸素浗度（mg／L）を求め，有効数字2椎で答えよ。
 の概要を示せ。ただし，反応前の質量を M_{0}, t_{1} 秒後の質量を M_{1} としてグラフ内に記 せ。なお，この間の電流の値は一定であるとする。
（iii）電極aの質量は測定後に何mg增加したか，あるいは減少したか。有効数学2桁で答え よ。

図1 溶存酸素計の構造

II 次の文章を読み，以下の問に答えよ。必要ならば，アボガドロ定数 $N_{\mathrm{A}}=6.0 \times 10^{23} / \mathrm{mol}$ ，気体定数 $R=8.3 \times 10^{3} \mathrm{~Pa} \cdot \mathrm{~L} /(\mathrm{mol} \cdot \mathrm{K})$ ，原子量として水素 1.0 ，炭素 12 ，窒素 14 ，酸素 16 ，アルミ ニウム 27 ，塩素 35.5 を用いよ。（配点 34 ）

原子やイオンを結びつける化学結合として，金属結合やイオン結合，共有結合がある。また，分子間にはたらく分子間力として，ファンデルワールスカや水素結合がある。
金属結晶では，金属元素の原子が䙺則正しく配列し，自由電子の共有による金属結合で結びつい ている。アルミニウムは周期表の13族に属する金属元素である。アルミニウムには27 ${ }^{2}$ 以外の同位体はほとんど存在しない。アルミニウムの原子半径は $1.4 \times 10^{-8} \mathrm{~cm}$ で，結晶格子は面心立方格子である。アルミニウムは，強塩基の水溶液とも酸の水溶液とも反応して溶ける両性金属であ る。

分子結晶では分子が分子間力で規則正しく配列している。ドライアイスは三酸化炭素の分子結晶 である。また。氷は水分子からなる分子結晶で，分子間で水素結合が生じている。
多数のアミノ酸が鎖状に結合することで，ポリペプチドが形成される。ポリペプチド鎖はペプチ ド結合の部分で水素結合することによって二次構造をとる。さらに，二次構造のポリペプチド鎖 は，ジスルフイド結合やイオン結合などにより複雑に折扎曲がった三次構造をとる。

間1下線部（ア）について，イオン結合において陽イオンと陰イオンの間にはたらく力を何と㭔ぶ か。

問2 下線部（イルついて，水素結合を形成する水素原子以外の原子を元素記号で3つ挙げよ。

問3下線部门にしついて，${ }^{27} \mathrm{Al}$ の中性子の数はいくつか。

問4 下線部（I）について，面心立方格子の配位数はいくつか。

間5アルミニウムの密度は何 $\mathrm{g} / \mathrm{cm}^{3}$ か。有効数字 2 柎で答えよ。ただし，$\sqrt{2}=1.4, \sqrt{3}=1.7$ とする。

問 6 下線部が）について，アルミニウムを水酸化ナトリウム水溶液に溶かすと錯イオンが生じた。
（1）錯イオンとは，どのようなイオンのことか説明せよ。
（2）アルミニウムと水酸化ナトリウムの反応を化学反応式で表せ。

間7下線部かについて， $27^{\circ} \mathrm{C}, ~ 1.04 \times 10^{\text {² }} \mathrm{Pa}$ でアルミニウムを嗑酸に溶かし，生じた気体を水上置換で捕集したところ， 747 mL の気体が得られた。このとき，培酸に溶けたアルミニウム は，何 g か。有効数字 2 桁で答えよ。ただし， $27^{\circ} \mathrm{C}$ における水の蒸気王を $4.00 \times 10^{3} \mathrm{~Pa}$ と し，生じた気体は完全に捕集され，気体の水への溶解は輿視できるものとする。

間 8 「線部キについて，二酸化炭素分子中の炭素原子はわずかに正電荷（ $\delta+$ ）を带び，酸素原子 はわずかに負電荷（ δ 一）を酉びているにもかかわらず，二酸化炭素分子全体をしては與極性分子である。その理由を説明せよ。

問 9 一酸化炭素の生成熱は $394 \mathrm{~kJ} / \mathrm{mol}$ である。 $0=0$ 結合エネルギーを $498 \mathrm{~kJ} / \mathrm{mol}$ ，炭素（黑鑵）の舅華熱を $714 \mathrm{~kJ} / \mathrm{mol}$ とするとき， $\mathrm{C}=\mathrm{O}$ 結令エネルギーは何 $\mathrm{kJ} / \mathrm{mol}$ となるか。有効数字3梅で答えよ。

間10 下線部か）について，氷の結増中では，1個の水分子に対して何個の水分子が水素結合で結合 しているか。

間11 下線部なについて，二次構違として知られている構造の名前を2つ挙げよ。

開12 下線部（コ）について，タンバク質を構成しているaーアミノ酸のうち，ジスルフィド結合を形成するために必要な $a-$ アミノ酸を1つ答えよ。

間13 アミノ酸であるグリシン（ $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}_{2}$ ）が数分子結合したベプチドがある。このベブチド 60.6 mg を溶解した水溶液 100 mL の $27^{\circ} \mathrm{C}$ における浸透正は $4.98 \times 10^{3} \mathrm{~Pa}$ であつた。ただ し，分子間にはたらく力によるベプチド分子どうしの結びつきは無視できるものとする。
（1）このペプチドはグリシン何分子が結合したものか。
（2）このベブチドとグリシンを区別することができる呈色反応を1つ挙げよ。

III 次の文章を読み，以下の問に答えよ。なお，原子量は水素1．0，炭素 12 ，酸素 16 ，カリウム 39，ヨウ素 127 とする。また，不斉炭素原子により生じる立体異性体は区別しなくてよい。（配点 34）

カルボン酸は，カルボキシ基 -COOH をもつ化合物である。カルボキシ基か鎖状炭化水素に結合 したものを脂防酸，ベンゼン環に結合したものを劳香族カルボン酸と㭔び，分子中のカルボキシ基 の数によって，モノカルボン酸，ジカルボン酸などに分類される。分子量がもつとも小さいモノカ ルボン酸である（1）や，分子量がもつとも小さいジカルボン酸である（2）は還元性を もち，酸化されると二酸化炭素が生成する。

問 1 \square
\square に当てはまる化合物名を答えよ。

問2 下線部（ア）について，（2）が酸化されるときの反応を，電子 e^{-}－を用いたイオン反応式 で答えよ。

問3 分子式 $\mathrm{C}_{5} \mathrm{H}_{19} \mathrm{O}_{2}$ の化合物 A には，カルボン酸やエステル，アルコール，アルデヒド，エー テルなどの構造異性体がそれぞれ複数存在する。構造式を決定するため，ある実験を行った結果，化合物Aはカルボン酸だと推定された。
（1）下線部けについて，実験手順と推定した根抛がわかるように，以下の語群から該当する語訽を 1 つ用いて 40 字以内で説明せよ。

哣群：ナトリウム・炭酸水素ナトリウム水溶液•塩化鉄（III）水溶液• アンモ二ア性硝酸銀水溶液•自素水・ヨウ素溶液•陽イオン交換樹脂
（2）化合物 A の構造異性体のうち，カルボン酸であるものの構造式をすべて答えよ。ただ し，不斉炭素原子がある場合は，その炭素原子に米を付けて示せ。

閣4酸化バナジウム（V）を触媒としてベンゼンを高温で空気酸化し，生成した化合物を水と反応 させると化合物 B が得られた。化合物 B は分子量 116 のジカルボン酸であり，適切な反応条体で水を付加すると，不斉炭素原子をもつ化合物 C が生成した。化合物 C を加熱すると 1 分子の水を失つて，化合物 B と，₹のシスートランス異性体である化合物 D が得られた。化合物 B をさらに加熱すると，分子内で1分子の水を失つて，酸無水物になつた。また，化合物 Bに悬素を付加すると，不斉炭素原子を2つもつ化合物が得られた。
（1）化合物 B と D の化合物名を，そ扎ぞ扎答えよ。
（2）化合物 B と D の構造式を，それぞれ答えよ。
（3）化合物Cの構造式を答えよ。ただし，不斉炭素原子に＊を付けて示せ。
（4）化合物 B の構造異性体で，化合物D 以外のジカルボン德の構造式を答えよ。
（5）下線部门りについて，ある触媒を用いて化合物 B を過酸化水素と反応させると，息素の代 わりにヒドロキシ基がついた化合物が得ら扎る。この化合物に水酸化力りウムと水酸化于ト リウムをそれでれ適量ずつ加えた後，硫酸銆（I）水溶液と混和すると，アルデヒドと反応し て赤色の沈殿を生じる，深青色の指示薬が得られた。（古この指示薬の名前と，（か）赤色沈殿 の化学式を答えよ。

問5酸化バナジウム（V）を触媒として，ナフタレンを高温で空気酸化すると，化合物 E が生成 した。化合物 E に水を反庶させると学香族ジカルボン酸である化台物 F が得られた。化合物 Fには構造異性体がいくつか存在し，その一つである化合物 Gと（3）が，結合によつて縮合重合した合成樹指は，ペットボトルの原料として普及している。
（1）（3）4 に当てはまる嘼句を答えよ。
（2）下線部エについて，化合物 E から化合物下が生じる化学反応式を答えよ。
（3）化合物 F の構造異性体で，化合物（G以外の芳香族ジカルボン酸の構造式を答えよ。

問 6 油脂は， 3 分子の脂肪酸上 1 分子のグリセリンが縮合した化合物である。油脂である化合物 Hについて， 222 mg を完全にけん化するためには 42.0 mg の水酸化力りウムが必要である。化合物 H には $\mathrm{C}=\mathrm{C}$ 結合が存在し， 222 mg の化合物 H に 63.5 mg のヨウ素を付加すること ができる。
（1）化合物 H O分子量を整数值で答えよ。
（2）1分子の化合物 H には $\mathrm{C}=\mathrm{C}$ 結合がいくつ存在するか，答えよ。
（3）化合物 H に水素を完全に付加した後，けん化して得られた脂肪酸は，南鎖状の炭化水素基をもつ一種頻の飽和脂肪酸だけであった。また，化合物 H には不斉炭素原子は存在しな かった。化合物 H の構造式を答えよ。ただし，脂肪酸の炭化水素基は $\mathrm{C}_{20} \mathrm{H}_{39} \mathrm{p}_{3} \mathrm{C}_{3} \mathrm{H}_{4}$ の ようなかたちで炭素原子と水索原子の数を示し，不飽和炭化水素基に存在する二重結合の位置の違いは区別しなくてよい。

